

CREATININE

4 x 50 mL, 4 x 100 mL 51009001, 51009003

Sample

This reagent is intended for in vitro quantitative determination of creatinine in serum, plasma & urine.

- Modified Jaffe's method
- Linear up to 24 mg/dL
- No Bilirubin interference up to 10 mg/dL

CLINICAL SIGNIFICANCE

Creatinine is formed in muscles from phospho creatinine. It is an important form of energy, being a store of high-energy phosphate. Creatinine determinations have one advantage over Urea determination that it is not affected by a high protein diet.

Serum creatinine is more specific & sensitive indicator of renal function. Simultaneous estimations of serum urea & creatinine provides better information. Serum urea nitrogen, creatinine ratio is > 15 in pre renal failure, & < 10 in renal failure. Decreased levels are found in muscle dystrophy.

PRINCIPLE

Creatinine reacts with picric acid to produce a colored compound, creatinine alkaline picrate. The change in absorbance is proportional to the creatinine concentration

REAGENT COMPOSITION

CREATININE BASE REAGENT (R1) 2 x 50 mL, 2 x 100 mL Sodium hydroxide 300 mmol/L Sodium Phosphate

CREATININE DYE REAGENT (R2) 2 x 50 mL, 2 x 100 mL

Picric Acid 8.73 mmol/L

Surfactant

CREATININE STANDARD 1 x 4 mL Creatinine standard concentration 2 mg/dL

STORAGE & STABILITY

The sealed reagents are stable up to the expiry date stated on the label, when stored at room temperature & standard at 2 - $8^{\circ}\text{C}.$

This reagent is linear up to 24 mg/dL.

If the concentration is greater than linearity (24 mg/dL), dilute the sample with normal saline and repeat the assay. Multiply the result with dilution factor.

NORMAL RANGE

It is recommended that each laboratory establish its own reference values.

The following value may be used as guide line.

: 0.7 - 1.4 mg/dL Men Serum: : 0.6 - 1.2 mg/dL Female : 0.80 - 1.80 gm/24 hour

PREPARATION AND STABILITY OF WORKING REAGENT

Mix 1 volume of Reagent 1 (R1) with 1 volume of Reagent 2 (R2).

To avoid contamination, use clean laboratory wares.

Avoid direct exposure of reagent to light.

Serum / plasma (free of haemolysis) / Urine (diluted 1/100 with distilled water)

GENERAL SYSTEM PARAMETER

Mode of Reaction	Fixed time
Slope of reaction	Increasing
Wavelength	492 nm/ 505 nm
Temperature	37°C
Standard Concentration	2 mg/dL
Linearity	24 mg/dL
Blank	D I water
Delay time	60 sec
Interval	60 sec
Sample volume	100 μL
Reagent volume	1000 μL
Cuvette	1 cm light path

LABORATORY PROCEDURE

Working Reagent	1000 μL	1000 μL
Standard	100 μL	-
Sample	-	100 μL
	(=) 60 (1	1

Standard

Mix and read the optical density (T_,) 60 seconds after the sample or standard addition. Exactly 60 seconds after the first reading take second reading (T_,)

CALCULATION

(T,-T,) of sample Creatinine conc. (mg/dL) = (T,-T,) of Standard

BIBLIOGRAPHY

- Allen, L.C.; Clin chem. Vol.28 No.3, 1982, 555. Haeckel, R., et al.; Clin. Chem. 27/1 179-183 (1981). Tanganelli, E., Prencipe, L., Bassi, D., Cambiaghi, S. and Murador, E.; Clin.Chem 28/7, 1461-1464 (1982)

SYMBOLS USED ON THE LARELS

SYMBOLS LISED ON THE LABELS: LIVD IN VITRO DIAGNOSTIC USE I IS SEE PACKAGE INSERT FOR PROCEDURE LIDIT LOT NUMBER I MANUFACTURER'S ADDRESS I MANUFACTURING DATE I FXPIRY DA

